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QDI Constant Time Counters

Abstract—Counters are a generally useful circuit that appear
in many contexts. Because of this, the design space for clocked
counters has been widely explored. However, the same cannot be
said for robust clockless counters. To resolve this, we designed an
array of constant response time counters using the most robust
clockless logic family, Quasi Delay-Insensitive (QDI) circuits. We
compare our designs to their closest QDI counterparts from the
literature, showing significant improvements in design quality
metrics including transistor count, energy per operation,
frequency, and latency in a 28nm process. We also compare our
designs against prototypical synchronous counters generated by
commercial logic synthesis tools.

Keywords—counter; constant time; asynchronous; quasi-delay
insensitive; qdi

INTRODUCTION
Counters implement an important piece of functionality

with widespread use in both clocked and clockless designs,
playing critical roles in the control logic for power gating,
clock gating, and pipeline management [7][11][3]; for timers,
performance counters, and frequency dividers [5]; and for
iterative arithmetic circuits [6]. Its extensive utility draws
intense optimization from commercial synthesis tools (like
Synopsys Design Compiler and Cadence Genus) that take
great care to optimize their structures during logic synthesis.

While clocked counters have been thoroughly explored
such as the increment/decrement counter in [31], the
increment/write in [27], and the decrement/write in [28][30],
clockless counters have not. There are many clockless logic
families [22], but this paper is limited to Quasi Delay-
Insensitive (QDI) design [21] which has been successfully
used in the past to implement many complex integrated
circuits including microprocessors [8][9][7][11], FPGAs [12]
[4], and neuromorphic chips [10][2][1][5].

QDI design is widely regarded as the most robust of the
families since correct operation is independent of gate delay.
Circuits are partitioned into a system of components that
communicate over message passing channels which are
implemented by a bundle or collection of wires that carry
both data and flow control information in the form of a
request and an acknowledge.

This framework makes it easy to implement sophisticated
control circuitry and exploit average-case workload
characteristics to reduce energy usage and increase
throughput. For counters, the more significant bits typically

switch far less often, burning proportionally less dynamic
power. This also makes it possible to carefully tune the circuit
interface for specific timings. For example, a QDI counter can
be designed to operate with a constant response time making
its throughput independent from the number of bits. Such a
clockless counter is also readily applicable to clocked
environments because there is a strict upper bound on the
delay between the input request and output response.
Constant response time counters are not possible from
standard clocked logic synthesis [24].

QDI circuits are often written in a control-flow language
called Communicating Hardware Processes (CHP) described
in Appendix A and then synthesized into a Production Rule
Set (PRS) described in Appendix B using two basic methods.

The first, Syntax-Directed Translation [13][14], maps the
program syntax onto a predefined library of clockless
processes through structural induction creating a circuit that
strictly respects the control flow behavior of the original
program. Well formulated examples of this method are
Berkel's constant response time decrementing counter with
zero detection [24] and increment/decrement counter with
zero/full detection [25].

The second, Formal Synthesis [18][20], iteratively applies
a small set of formal program transformations like projection
and process decomposition, decomposing the program until
the resulting processes each represent a single pipeline stage.
Then, these stages are synthesized using Martin Synthesis
into production rules. This approach respects data
dependencies, but not necessarily the original control-flow
behavior of the specification [19]. This method was used to
construct an increment/decrement counter with constant-time
zero detection [32], which was then applied to power gate
long pipelines in the ULSNAP processor [11].

In this paper, we use a well-known hybrid approach,
Templated Synthesis [17]. First, we apply the formal
transformations to decompose a CHP description for each of
our robust, clockless, constant response time counters into
Dynamic Single Assignment [23] CHP descriptions for each
bit. Then, we apply various template patterns and micro-
architectural optimizations to synthesize PRS which are then
automatically verified and compiled into circuits. We
compare our designs against published counters developed
using Syntax-Directed Translation and Formal Synthesis, and
show significant improvements in energy per operation as
well as delay. We also show that our designs compare
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favorably to a standard clocked counter produced by
commercial synthesis tools.

Our optimization rules, listed below, build upon Andrew
Lines' Templated Synthesis method, starting with a flattened
DSA CHP specification of a single pipeline stage process and
deriving energy-efficient high-throughput PRS.
1. Share logic between both computation and completion

detection.
2. Use the simpler Weak Conditioned Half Buffer template

(WCHB) when possible.
3. Group functionally equivalent behaviors prior to circuit

synthesis.
4. Use combinational gates when possible.
5. Use our new template for internal state.

Each section will cover a different piece of functionality,
giving the abstract specification in CHP and the final circuit
implementation in PRS. Section 1 covers the increment,
decrement, and clear commands along with constant time
zero detection. Section 2 covers the read command. Section 3
covers the write command and Section 4 covers an interface
circuit for the write command. Section 5 covers the stream
command, and Section 6 discusses our evaluation of all of
these counters, making concluding remarks. Finally, the
appendices describe the notation we use.

Each counter will be named using the first letter of the
commands and statuses it supports. So idzn would be an
increment/decrement counter with zero/not zero detection.
Further, an underscore separates channel boundaries. So 
idzn would be a single channel with a 1of2 encoded request:
i and d and a 1of2 encoded enable: z and n while id_zn
would have two channels each with a 1of2 request and
dataless enable.

I. IDCZN: INCREMENT, DECREMENT, CLEAR

A. Function
We'll start by assuming that the counter won't under or

overflow. It starts at zero, then for every iteration the status of
the counter is sent across Lz , a command is received from
Lc , then the value, vn , is either increased by one, decreased
by one, or reset to zero depending upon the command.
vn:=0; 

∗[Lz!(vn=0); Lc?lc; 

  [ lc=inc → vn:=vn+1 

  ▯ lc=dec → vn:=vn-1 

  ▯ lc=clr → vn:=0 

  ] 

 ]

To derive an implementable process for the least
significant bit, we start by separating the least significant bit,
v0 , of the value of the counter from the remaining bits, vn .
This requires that we implement the carry circuitry for
increment, decrement, and clear. If Lc  is increment and v  is
1  or Lc  is decrement and v  is 0 , the increment or
decrement command should be carried to the remaining bits.
Otherwise, the remaining bits are left unchanged. Either way,
the value of v  flips. If Lc  is clear, then v  will be set to 0 .
If the remaining bits are already zero, then they will be left
unchanged. Otherwise, they will also be set to zero.

v0:=0, vn:=0; 

∗[Lz!(v0=0 ∧ vn=0); Lc?lc; 

  [ lc=inc → [ v0=0 → v0:=1 

             ▯ v0=1 → v0:=0, vn:=vn+1 ] 

  ▯ lc=dec → [ v0=0 → v0:=1, vn:=vn-1 

             ▯ v0=1 → v0:=0 ] 

  ▯ lc=clr → v0:=0; [ vn≠0 → vn:=0 

                    ▯ vn=0 → skip ] 

  ] 

 ]

Then, we introduce two new channels: Rc  to
communicate the carried command (inc, dec, clr) and Rz  to
respond with the resulting status (zero, not zero). This
removes all direct data dependencies between v0  and vn  so
that we can apply projection.

v0:=0, vn:=0; (Rz!vn=0 ∥ Rz?rz); 

∗[Lz!(v0=0 ∧ rz); Lc?lc; 

  [ lc=inc → [ v0=0 → v0:=1 

             ▯ v0=1 → 

               v0:=0; Rc!inc; Rz?rz ∥ 

               Rc?rc; vn:=vn+1; Rz!vn=0 ] 

  ▯ lc=dec → [ v0=0 → 

               v0:=1; Rc!dec; Rz?rz ∥ 

               Rc?rc; vn:=vn-1; Rz!vn=0 

             ▯ v0=1 → v0:=0 ] 

  ▯ lc=clr → v0:=0; 

             [ ¬rz → Rc!clr; Rz?rz ∥ 

                     Rc?rc; vn:=0; Rz!true 

             ▯ rz → skip ] 

  ] 

 ]

Now, we can project the process into one that implements
only the least significant bit of the counter with variables
v0, lc, rz  and one that implements the remaining bits
with variables vn, rc .
v0:=0; Rz?rz; 

∗[Lz!(v0=0 ∧ rz); Lc?lc; 

  [ lc=inc → [ v0=0 → v0:=1 

             ▯ v0=1 → v0:=0; Rc!inc; Rz?rz ] 

  ▯ lc=dec → [ v0=0 → v0:=1; Rc!dec; Rz?rz 

             ▯ v0=1 → v0:=0 ] 

  ▯ lc=clr → v0:=0; [ ¬rz → Rc!clr; Rz?rz 

                    ▯ rz → skip ] 

  ] 

 ] ∥ 

vn:=0; Rz!vn=0; 

∗[Rc?rc; 

  [ rc=inc → vn:=vn+1; Rz!vn=0 

  ▯ rc=dec → vn:=vn-1; Rz!vn=0 

  ▯ rc=clr → vn:=0; Rz!true 

  ] 

 ]

The specification for the remaining bits is left unaffected,
and each bit has four channels: Lc  and Lz  for the command
and counter status and Rc  and Rz  to carry the command to
and receive the status from the remaining bits. We can
continue executing this sequence of transformations
recursively on the remaining bits to formulate an N-bit
counter.



The value pending on the Rz  channel can be observed
without executing a communication event by using a data
probe as indicated by Rz . This allows us to rotate the
communication actions on Rz  so they always occur right
before the associated communication on Rc . Finally, we
flatten the specification into DSA format.
v:=0; 

∗[ Lz!(v=0 ∧ Rz); Lc?lc; 

   [ lc=inc ∧ v=1  → v:=0; Rz?; Rc!inc 

   ▯ lc=inc ∧ v=0  → v:=1 

   ▯ lc=dec ∧ v=0  → v:=1; Rz?; Rc!dec 

   ▯ lc=dec ∧ v=1  → v:=0 

   ▯ lc=clr ∧ !Rz  → v:=0; Rz?; Rc!clr 

   ▯ lc=clr ∧  Rz  → v:=0 

   ] 

 ]

Because Lc  and Lz , and Rc  and Rz  always
communicate together, they can be merged into counter-flow
channels L  and R  with the command encoded in the request
and the zero status encoded in the acknowledge as shown
below.

Fig. 1. The idczn counter decomposed into processes.

However, our counter must be of finite size meaning we'll
need to cap it off. We'll do this with a circuit attached to the
most significant bit (MSB) that sinks the command on Lc
and always returns true on Lz : ∗[ Lc?; Lz!true ] .
This adds an overflow condition to the previous counter
specification.
vn:=0; 

∗[Lz!(vn=0); Lc?lc; 

  [ lc=inc → vn:=vn+1 

  ▯ lc=dec → vn:=vn-1 

  ▯ lc=clr → vn:=0 

  ]; 

  [ vn > pow(2, bits) → 

             vn:=vn-pow(2, bits) 

  ▯ vn < 0 → vn:=vn+pow(2, bits) 

  ▯ else → skip 

  ] 

 ]

At the moment, if the value of the counter is pow(2,
bits)-1  (the value of each bit is 1 ), then an increment
command and the resulting status signal would have to
propagate across the full length of the counter. This means
that the zero detection circuitry will take linear time with
respect to the number of bits in the worst case.

A constant time zero detection can be implemented by
adding a third state to the internal register, v . v=z

represents that this and all bits of greater significance are
zero, v=0  represents that this bit is zero but there is at least
one of greater significance that isn't, and v=1  represents that
this bit is one. Now the internal register can be used to
calculate the counter status in constant time.

v:=z; 

∗[ Lz!(v=z); Lc?lc; 

  [ lc=inc ∧ v=1       → v:=0; Rz?; Rc!inc 

  ▯ lc=inc ∧ v≠1       → v:=1 

  ▯ lc=dec ∧ v≠1       → v:=1; Rz?; Rc!dec 

  ▯ lc=dec ∧ v=1 ∧  Rz → v:=z 

  ▯ lc=dec ∧ v=1 ∧ !Rz → v:=0 

  ▯ lc=clr ∧       !Rz → v:=z; Rz?; Rc!clr 

  ▯ lc=clr ∧        Rz → v:=z 

  ] 

 ]

This increases the maximum value the finite-length
counter can store before it overflows by pow(2, bits-
1) .

[ vn ≥ pow(2, bits)+pow(2, bits-1) → 

           vn:=vn-pow(2, bits) 

▯ vn < 0 → vn:=vn+pow(2, bits) 

▯ else → skip 

]

B. Implementation
Of the 7 conditions listed in the DSA CHP for each bit,

conditions 1, 3, and 6 forward the command from Lc  to Rc
while 2, 4, 5, and 7 don't produce an output. All conditions
always acknowledge the input. Conditions 1 and 5 always set
v:=0 , 2 and 3 set v:=1 , and 4, 6, and 7 set v:=z .
Conditions 1 through 5 always change the value of v  but 6
and 7 might not. Finally Rz  must be true if v=z .

We start our WCHB template by defining the rules for the
forward drivers. Noticing that conditions 4 and 7 both set
v:=z  and don't forward the command, we can merge them
into a single forward rule, Rz .
v1 ∧ (R

z
 ∨ R

n
) ∧ L

i
 → R

i
↾ 

(v0 ∨ vz) ∧ L
i
 → R1↾ 

(v0 ∨ vz) ∧ (R
z
 ∨ R

n
) ∧ L

d
 → R

d
↾ 

v1 ∧ R
n
 ∧ L

d
 → R0↾ 

R
n
 ∧ L

c
 → R

c
↾ 

R
z
 ∧ (v1 ∧ L

d
 ∨ L

c
) → Rz↾

To understand what these production rules look like,
we've rendered the production rules for Ri↾  from above and
Ri⇂  from below as a CMOS gate structure in black with
combinational feedback in grey.

Fig. 2. The gate controlling Ri  as described by the production rules.

Because there are 6 forward drivers, we'll need to use a
validity tree. However, we can use this to store the next value
of the internal register by defining x0 , x1 , and xz . This
makes the rules for the internal register smaller and frees the
reset phase of the forward drivers from various problematic
acknowledgment constraints.



R
i
 ∨ R0 → x0⇂ 

R
d
 ∨ R1 → x1⇂ 

R
c
 ∨ Rz → xz⇂ 

¬x0 ∨ ¬x1 ∨ ¬xz → x↾

The checks for v0 , v1 , and vz  make the input enable
combinational removing the need for a staticizer and they can
be minimally sized since they are not on the critical path of
the gate. This kind of feedback structure is not possible in the
typical WCHB template for internal state found in [17].

v0 ∨ v1 ∨ x → L
z
⇂ 

vz ∨ x → L
n
⇂

Before using the validity tree to set the internal register,
we have to wait for the input command to go neutral. This
keeps all of the forward drivers stable while the register is
written. The usual template in [17] doesn't allow simultaneous
read/write of the internal state. We also make these three gates
combinational using minimally sized transistors to remove the
need for staticizers once again.
¬v1 ∧ ¬v0 ∨ ¬xz ∧ ¬L

c
 ∧ ¬L

d
 → vz↾ 

¬v1 ∧ ¬vz ∨ ¬x0 ∧ ¬L
i
 ∧ ¬L

d
 → v0↾ 

¬vz ∧ ¬v0 ∨ ¬x1 ∧ ¬L
i
 ∧ ¬L

d
 → v1↾ 

 

(xz ∨ L
c
 ∨ L

d
) ∧ (v0 ∨ v1) → vz⇂ 

(x0 ∨ L
i
 ∨ L

d
) ∧ (vz ∨ v1) → v0⇂ 

(x1 ∨ L
i
 ∨ L

d
) ∧ (vz ∨ v0) → v1⇂

The reset phase of our forward drivers looks similar to
that of a WCHB. However, checking the correct value of the
internal register guarantees that the input request is neutral.
This is because we check neutrality before writing the internal
register and the internal register is guaranteed to change. This
prevents the reset rules from becoming too long as tends to
happen in a typical complex WCHB.

There are two rules, Rc⇂  and Rz⇂  from conditions 6
and 7, where this doesn't necessarily happen. Clearing an
already zeroed counter isn't guaranteed change the value of
the internal register in the LSB. This forces us to check Lc  in
the reset rules of the LSB. Alternatively, we can assume that
clearing an already zeroed counter is an error and remove
these two transistors.
¬R

z
 ∧ ¬R

n
 ∧ ¬v1 → R

i
⇂ 

¬vz ∧ ¬v0 → R1⇂ 

¬R
z
 ∧ ¬R

n
 ∧ ¬vz ∧ ¬v0 → R

d
⇂ 

¬v1 → R0⇂ 

¬R
n
 ∧ ¬v0 ∧ ¬v1 ∧ ¬L

c
 → R

c
⇂ 

¬v0 ∧ ¬v1 ∧ ¬L
c
 → Rz⇂

Finally, the validity tree is reset and we can use the value
of the internal register to return the status of the counter.

¬R
i
 ∧ ¬R0 → x0↾ 

¬R
d
 ∧ ¬R1 → x1↾ 

¬R
c
 ∧ ¬Rz → xz↾ 

x0 ∧ x1 ∧ xz → x⇂ 

 

¬v0 ∧ ¬v1 ∧ ¬x → L
z
↾ 

¬vz ∧ ¬x → L
n
↾

The dzn and idzn variations may be derived by deleting
the unnecessary rules and their associated acknowledgments.

II. IDRZN: READING COUNTERS

A. Function
Like the other commands, the read command will

propagate from the LSB to the MSB. Each bit will send its
value upon receipt the command, producing the counter value
with skewed timing.

count:=0; 

∗[Lz!(count=0); Lc?lc; 

  [ lc=inc → count:=count+1 

  ▯ lc=dec → count:=count-1 

  ▯ lc=rd  → R!count 

  ]; 

  [ count ≥ pow(2, bits)+pow(2, bits-1) → 

                count:=count-pow(2, bits) 

  ▯ count<0 → count:=count+pow(2, bits) 

  ▯ else → skip 

  ] 

 ]

We'll build upon the implementation of the idzn

counter. Upon receiving a read command, it first forwards the
command, then sends the bit value. Aside from that, the rest
of the command and detection circuitry in a given bit is the
same as the idzn  counter.
v:=z; 

∗[ Lz!(v=z); Lc?lc; 

   [ lc=inc ∧ v=1       → v:=0; Rz?; Rc!inc 

   ▯ lc=inc ∧ v≠1       → v:=1 

   ▯ lc=dec ∧ v≠1       → v:=1; Rz?; Rc!dec 

   ▯ lc=dec ∧ v=1 ∧  Rz → v:=z 

   ▯ lc=dec ∧ v=1 ∧ !Rz → v:=0 

   ▯ lc=rd              → Rz?; Rc!rd; O!v 

   ] 

 ]

B. Implementation
There are two practical methods to implement this read.

For each method, we'll start with the idzn counter, showing
only the rules that are added or changed.

1. QDI Read
The first takes an entirely QDI approach, sending the bit

values through one bit QDI channels. We'll start by adding
one rule for the read command which is always forwarded
and a set of rules that output the read result.
(R

z
 ∨ R

n
) ∧ L

r
 → R

r
↾ 

 

v0 ∧ O
e
 ∧ L

r
 → O

f
↾ 

v1 ∧ O
e
 ∧ L

r
 → O

t
↾ 

vz ∧ O
e
 ∧ L

r
 → O

z
↾

Then, we add an extra validity check for the read result.
R
r
 ∧ (O

f
 ∨ O

t
 ∨ O

z
) → y↾ 

 

v0 ∨ v1 ∨ x ∨ y → L
z
⇂ 

vz ∨ x ∨ y → L
n
⇂



The rules for the internal register remain unchanged, and
the forward drivers for the read are reset normally.
¬R

z
 ∧ ¬R

n
 ∧ ¬L

r
 → R

r
⇂ 

 

¬O
e
 ∧ ¬L

r
 → O

f
⇂ 

¬O
e
 ∧ ¬L

r
 → O

t
⇂ 

¬O
e
 ∧ ¬L

r
 → O

z
⇂

The validity tree is reset normally, and the up-going rules
for the input enable are lengthened to check for the neutrality
of the read result.

¬R
r
 ∧ ¬O

f
 ∧ ¬O

t
 ∧ ¬O

z
 → y⇂ 

 

¬v0 ∧ ¬v1 ∧ ¬y ∧ ¬x → L
z
↾ 

¬vz ∧ ¬y ∧ ¬x → L
n
↾

2. Bundled Data Read
The second method latches the bit values upon receipt of

the command. When the command reaches the most
significant bit of the counter, it is forwarded from the counter
as the request signal for the newly generated bundled data
read. This mixed QDI/Bundled Data approach is a fairly rare
one. Most Bundled Data circuits have extremely simple
pipeline structures and most QDI circuits avoid timing
assumptions like the plague.

Much like the QDI read, we'll need to add a set of rules
for the read command which is always forwarded. It will be
fairly simple since it doesn't interact with much of the other
circuitry.
(R

z
 ∨ R

n
) ∧ L

r
 → R

r
↾ 

R
r
 → xx⇂ 

¬x0 ∨ ¬x1 ∨ ¬xz ∨ ¬xx → x↾ 

¬R
z
 ∧ ¬R

n
 ∧ ¬L

r
 → R

r
⇂ 

¬R
r
 → xx↾ 

xz ∧ x0 ∧ x1 ∧ xx → x↾

Then, if you don't care about the third value of the internal
register, vz , we'll need rules to merge it in with v0 .

D
t
 = v1 

v0 ∨ vz → D
f
⇂ 

¬v0 ∧ ¬vz → D
f
↾

Finally, the data, D , is latched using the read request.
O
f
 ∨ D

f
 ∧ R

r
 → O

t
⇂ 

O
t
 ∨ D

t
 ∧ R

r
 → O

f
⇂ 

¬O
f
 ∧ (¬D

f
 ∨ ¬R

r
) → O

t
↾ 

¬O
t
 ∧ (¬D

t
 ∨ ¬R

r
) → O

f
↾

This implements the most basic bundled data read which
can handle another command in constant time after a read
without problems unless it is another read. For two
consecutive reads, the second will overwrite the latched
values of the first before it finishes. So we have to delay the
second read.

The easiest way is to add a communication event between
the first and last bits in the counter for a read. So we'll need to
modify the first bit to add this communication event.

G
r
 = R

r
 

G
e
 ∧ (R

z
 ∨ R

n
) ∧ L

r
 → R

r
↾ 

¬G
e
 ∧ ¬R

z
 ∧ ¬R

n
 ∧ ¬L

r
 → R

r
⇂

Then we'll need to modify the end cap of the counter to
handle this new dependency and to forward the request signal
for the newly bundled data.

L
r
 ∧ G

r
 → R

r
↾ 

¬L
r
 ∧ ¬G

r
 → R

r
⇂ 

 

R
e
 → Ra⇂ 

¬R
e
 → Ra↾ 

¬Ra ∧ ¬R
r
 → G

e
↾ 

Ra ∨ R
r
 → G

e
⇂ 

 

Ra ∨ L
i
 ∨ L

d
 → L

z
⇂ 

¬Ra ∧ ¬L
i
 ∧ ¬L

d
 → L

z
↾ 

 

1 → L
n
⇂

Now subsequent commands will be delayed only if there
are two conflicting reads. This allows us to reduce the energy
required by the system while only suffering a minor
throughput hit.

III. DWZN: WRITING COUNTERS

A. Function
The write command operates much like the first method

for reading. Propagate the command through the counter and
have each bit write its value upon receipt of the command.
count:=0; 

∗[Lz!(count=0); Lc?lc; 

  [ lc=dec → count:=count-1 

  ▯ lc=wr  → W?count 

  ]; 

  [ count < 0 → count:=count+pow(2, bits) 

  ▯ count ≥ 0 → skip 

  ] 

 ]

However, determining the location of the MSB is
logarithmic with the number of bits. To ensure this doesn't
hinder the performance of the counter, we will introduce a
device that does this detection in parallel in worst case linear
time. This way we can do operations while the zero detection
for the write is taking place and the command can write 0 ,
1 , or z  directly to the internal register.

v:=z; 

∗[Lz!(v=z); Lc?lc; 

  [ lc=dec ∧ v≠1       → v:=1; Rz?; Rc! 

  ▯ lc=dec ∧ v=1 ∧ !Rz → v:=0 

  ▯ lc=dec ∧ v=1 ∧  Rz → v:=z 

  ▯ lc=wr              → Rz?; Rc!wr; W?v 

  ] 

 ]

B. Implementation
This implementation will build off the dzn counter,

showing only the rules that are added or changed. The
production rules for the write are structured similarly to the



read. We have a signal Rw  that is always forwarded during a
write, and then an input W  that we save to Rw0 , Rw1 , and
Rwz .
(R

z
 ∨ R

n
) ∧ L

w
 → R

w
↾ 

 

W
f
 ∧ R

w
 → Rw0↾ 

W
t
 ∧ R

w
 → Rw1↾ 

W
z
 ∧ R

w
 → Rwz↾

Now, Rw0 , Rw1 , and Rwz  stores the value to be
written, allowing us to lower the input enable immediately
and use the built in method to set the internal register.

Rw0 ∨ Rw1 ∨ Rwz → W
e
⇂ 

Rw0 ∨ R0 → x0⇂ 

Rw1 ∨ R
d
 → x1⇂ 

Rwz ∨ Rz → xz⇂

To ensure that the validity, x , is acknowledged we have
to check Lw  when writing the internal variable.

¬v1 ∧ ¬v0 ∨ ¬xz ∧ ¬L
w
 ∧ ¬L

d
 → vz↾ 

¬v1 ∧ ¬vz ∨ ¬x0 ∧ ¬L
w
 ∧ ¬L

d
 → v0↾ 

¬vz ∧ ¬v0 ∨ ¬x1 ∧ ¬L
w
 ∧ ¬L

d
 → v1↾ 

 

(L
w
 ∨ L

d
 ∨ xz) ∧ (v0 ∨ v1) → vz⇂ 

(L
w
 ∨ L

d
 ∨ x0) ∧ (vz ∨ v1) → v0⇂ 

(L
w
 ∨ L

d
 ∨ x1) ∧ (vz ∨ v0) → v1⇂

The output signals are then reset normally using the Rw0 ,
Rw1 , and Rwz  signals to check the correct value of the
internal register.
¬R

z
 ∧ ¬R

n
 ∧ ¬L

w
 → R

w
⇂ 

 

¬W
f
 ∧ ¬vz ∧ ¬v1 ∧ ¬R

w
 → Rw0⇂ 

¬W
t
 ∧ ¬v0 ∧ ¬vz ∧ ¬R

w
 → Rw1⇂ 

¬W
z
 ∧ ¬v0 ∧ ¬v1 ∧ ¬R

w
 → Rwz⇂

Then the rest of the validity tree continues as usual and
the input enable rules are left unchanged.

¬Rw0 ∧ ¬Rw1 ∧ ¬Rwz → W
e
↾ 

¬Rw0 ∧ ¬R0 → x0↾ 

¬Rw1 ∧ ¬R
d
 → x1↾ 

¬Rwz ∧ ¬Rz → xz↾

IV. DWZN: WRITING COUNTER INTERFACE

A. Function
The zero detection block consumes an N bit base two

integer and converts it to the three-valued format necessary
for this counter.

Once again, we'll use a recursive implementation, pulling
bit into its own process so that it plugs into the W  channel of
the writing counter. It simply propagates the zero detection
from the MSB to LSB until it either reaches a non-zero bit or
the LSB. If every bit of greater significance is zero and this
bit is zero, then we forward true  on the Zo  channel. If this
bit is one, then we need to forward false .

∗[Wi?w; Zi?z; 

  [ w=0 ∧ z=0 → Zo!0; Wo!0 

  ▯ w=0 ∧ z=1 → Zo!1; Wo!2 

  ▯ w=1       → Zo!0; Wo!1 

  ] 

 ]

B. Implementation
With this implementation, we can take advantage of early

out to get logarithmic average case complexity instead of
linear. If Wi  is true  or Zi  is false , then we already
know we need to forward false  on the Zo  channel before
we receive anything on the other channel. This allows us to
break the dependency chain, reducing the average
propagation time.

Upon receiving both inputs and setting the output on Wo ,
the input enables are lowered and Zo  reset. This leaves the
value on Wo  unaffected while waiting for the counter,
making the interface much less costly in terms of throughput
and response time because it can complete its reset phase very
quickly after Wo  is finished.
Wi

e
 = Le 

Zi
e
 = Le 

Zo
e
 ∧ (Zi

f
 ∨ Wi

t
) → Zo

f
↾ 

Zo
e
 ∧ Zi

t
 ∧ Wi

f
 → Zo

t
↾

Zi
f
 ∧ Wi

f
 ∧ Wo

e
 → Wo

f
↾ 

(Zi
f
 ∨ Zi

t
) ∧ Wi

t
 ∧ Wo

e
 → Wo

t
↾ 

Zi
t
 ∧ Wi

f
 ∧ Wo

e
 → Wo

z
↾

Zo
f
 ∨ Zo

t
 → Zv⇂ 

Wo
f
 ∨ Wo

t
 ∨ Wo

z
 → Wv⇂ 

¬Zv ∧ ¬Wv → Le⇂

¬Zo
e
 ∧ ¬Zi

f
 ∧ ¬Wi

t
 → Zo

f
⇂ 

¬Zo
e
 ∧ ¬Zi

t
 ∧ ¬Wi

f
 → Zo

t
⇂

¬Zi
f
 ∧ ¬Wi

f
 ∧ ¬Wo

e
 → Wo

f
⇂ 

¬Zi
f
 ∧ ¬Zi

t
 ∧ ¬Wi

t
 ∧ ¬Wo

e
 → Wo

t
⇂ 

¬Zi
t
 ∧ ¬Wi

f
 ∧ ¬Wo

e
 → Wo

z
⇂

¬Zo
f
 ∧ ¬Zo

t
 → Zv↾ 

¬Wo
f
 ∧ ¬Wo

t
 ∧ ¬Wo

z
 → Wv↾ 

Zv ∧ Wv → Le↾

V. IS_ZN: STREAMING COUNTERS

A. Function
Finally, there are several applications where you might

need to store a large number of tokens to be released later. For
that purpose, we have an interface that converts the
increment/decrement counter to a increment/stream counter in
which one stream command will continuously produce tokens
and decrement the counter until it is empty.



count:=0; 

∗[ L?cmd; 

   [ cmd=inc → count:=count+1; 

     [ count≥pow(2, bits)+pow(2, bits-1) → 

       count:=count-pow(2, bits) 

     ▯ else → skip 

     ] 

   ▯ cmd=stream → Z!(count=0); 

     ∗[ count ≠ 0 → 

       count:=count-1; Z!(count=0) ] 

   ] 

 ]

The interface has three channels. The first channel, L , is
the input request with increment or stream. The second
channel, C , is an idzn channel that talks to the counter. The
third channel, Z , responds with zero or not zero when the
counter is being streamed. This interface is implemented by
repeatedly producing decrement requests until the zero flag is
set, at which point it acknowledges it's input request.

Cz?cz; 

∗[ L?cmd; 

   [ cmd=inc → Cc!inc; Cz?cz; 

   ▯ cmd=dec → Z!cz; 

     ∗[ ¬cz → Cc!dec; Cz?cz; Z!cz ] 

   ] 

 ]

B. Implementation
To implement this interface, the internal loop must be

flattened into its parent conditional statement. Instead of just
one condition for decrement, there are now two. One for
decrement zero and one for decrement not zero.

Because the rules for Cd  and Zf  are the same, we make
them the same node with no consequences. So this turns into
a fairly simple buffer.
C
d
 = Z

f
 

 

Z
e
 ∧ L

f
 ∧ C

n
 → C

d
↾ 

Z
e
 ∧ L

f
 ∧ C

z
 → Z

t
↾ 

L
t
 ∧ (C

z
 ∨ C

n
) → C

i
↾ 

 

Z
t
 ∨ C

i
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e
⇂ 

 

¬Z
e
 ∧ ¬C

n
 → C

d
⇂ 

¬Z
e
 ∧ ¬L

f
 → Z

t
⇂ 

¬L
t
 ∧ ¬C

z
 ∧ ¬C

n
 → C

i
⇂ 

 

¬Z
t
 ∧ ¬C

i
 → L

e
↾

This is the one type of counter that is not applicable to
clocked environments. Because the input must wait until the
counter empty before continuing and an output is not
produced on a increment, this counter cannot be clocked.

VI. EVALUATION
We used a set of in-house tools to develop and evaluate

these circuits. Production rule specifications are verified with
a switch-level simulation which identifies instability,
interference, and deadlock then automatically translated into

netlists. These netlists are then verified using vcs-hsim.
The CHP was simulated using C++ to generate inject and
expect values which were tied into both the switch level and
analog simulations using Python. This allowed us to verify
circuit and behavioral correctness by checking the behavioral,
digital, and analog simulations against each other.

To evaluate frequency and energy per operation we
simulated a 1V 28nm process on 5 bit instances of each
counter with a uniform random distribution of input
commands. Latency was measured from the 0.5v level of the
input command to the 0.5v level of the detection event. To
get more accurate results, we protected each of the digitally
driven channels with a FIFO of three WCHBs isolated to a
different power source. All counters are sized minimally with
a pn-ratio of 2. In all of our implementations, we avoid using
the HCTA. However, it would be fairly easy to make the
necessary modifications to take advantage of it. In all
implementations, we use combinational feedback for C-
elements. Circuitry necessary for reset was not included in
any the above descriptions.

Fig. 3. Measured Performance and Energy for an array of counters.

Type Trans Frequency Energy/Op Latency

d_z 50N 2.73 GHz 24.01 fJ N/A

dzn 102N+10 2.15 GHz 48.17 fJ 399 ps

idzn 146N+12 2.03 GHz 56.05 fJ 421 ps

idczn 174N+14 2.00 GHz 40.62 fJ 442 ps

idrzn 246N+14 1.88 GHz 89.51 fJ 441 ps

idrzn_bd 188N+32 1.77 GHz 75.20 fJ 441 ps

dwzn 192N+12 1.86 GHz 43.81 fJ 487 ps

is_zn 146N+61 2.08 GHz 45.52 fJ 139 ps

We simulated [24] and [32] in the same 28nm process
with the same minimal interface elements to get as close a
comparison as possible. This allowed us to identify any
functional differences between the two implementations as
well.

[24] was closest to the dzn counter that we implemented.
Though ours is limited to powers of two and uses only one
channel. [24] can implement any max value and all three
signals are split into separate dataless channels.

[32] was closest to the idzn counter that we
implemented. However, instead of sending the zero status
before receiving a command, they send the zero status after
receiving a command, though this only matters for the first
command. They also split the status signal and the command
into two separate channels instead of one.



Type Trans Frequency Energy/Op Latency

d_z_n[24] 117N+32 1.42 GHz 73.34 fJ 468 ps

id_zn[32] 398N+26 0.60 GHz 152.76 fJ 1150 ps

Our counter template performs better in every metric
operating 1.51 times faster than [24] and 3.38 times faster
than [32] using 34% less energy than [24] and 63% less
energy than [32]. Furthermore, our counter template is
extensible to cover much more of the design space while [24]
and [32] are limited to a single problem statement.

Finally, we wrote a simple id_c_zn counter in Verilog
and synthesized it using Synopsys Design Compiler (DC).
Examining the verilog netlist, DC placed an array of clocked
registers which outputs to and receives inputs from a parallel
ripple-carry incrementer and outputs to a parallel zero
detector. We evaluated this using the same setup that we use
to evaluate the other designs and our equivalent counter uses
65% less energy at the same frequency.

Type Trans Frequency Energy/Op

id_c_zn 74N 1.00 GHz 169.18 fJ

id_c_zn 74N 2.00 GHz 116.75 fJ

id_c_zn 74N 3.00 GHz 98.24 fJ

id_c_zn 74N 4.00 GHz 86.12 fJ

VII. CONCLUSION
This paper presents an array of QDI constant response

time counters for use in clocked and clockless systems
showing a frequency and energy usage superior to many other
designs. However, there are still a few things left to explore.

Combinations of detection signals including full, equal,
less than, and greater than have yet to be explored. These
could provide useful information regarding the state of the
counter to the external system. Further, at the time of design a
sufficient relative timing assumption framework and toolset
was not available. It is plausible that significant performance
and efficiency gains could be realized by applying such a
framework to the designs found in this paper. Finally, some of
these optimizations can be incorporated into a logic
optimization tool for designing asynchronous circuits.

APPENDIX

A. CHP Notation
Communicating Hardware Processes (CHP) is a hardware

description language used to describe clockless circuits
derived from C.A.R. Hoare's Communicating Sequential
Processes (CSP) [15]. A full description of CHP and its
semantics can be found in [20]. Below is an informal
description of that notation listed top to bottom in descending
precedence.

Skip skip  does nothing and continues to the next
command.
Dataless Assignment c↾  sets the voltage of the node c
to Vdd  and c⇂  sets it to GND .
Assignment a := e  waits until the expression, e, has a
valid value, then assigns that value to the variable, a .
Send X!e  waits until the expression e  has a valid value,
then sends that value across the channel X . X!  is a
dataless send.

Receive X?a  waits until there is a valid value on the
channel X , then assigns that value to the variable a . X?
is a dataless receive.
Probe X  returns the value to be received from the channel
X  without executing a receive.
Sequential Composition S; T  executes the programs S
followed by T .
Parallel Composition S ∥ T  executes the programs S
and T  in any order.
Deterministic Selection [G1 → S1▯...▯Gn → Sn]
where Gi  is a guard and Si  is a program. A guard is a
dataless expression or an expression that is implicitly cast
to dataless. This waits until one of the guards, Gi ,
evaluates to Vdd , then executes the corresponding
program, Si . The guards must be mutually exclusive. The
notation [G]  is shorthand for [G → skip] .
Repetition ∗[G1 → S1▯...▯Gn → Sn]  is similar to
the selection statements. However, the action is repeated
until no guard evaluates to Vdd . ∗[S]  is shorthand for
∗[true → S] .

B. PRS Notation
In a Production Rule Set (PRS), a Production Rule is a

compact way to specify a single pull-up or pull-down network
in a circuit. An alias a = b  aliases two names to one circuit
node. A rule G → A  represents a guarded action where G  is
a guard (as described above) and A  is a dataless assignment
as described above. A gate is made up of multiple rules that
describe the up and down assignments. The guard of each rule
in a gate represents a part of the pull-up or pull-down network
of that gate depending upon the corresponding assignment. If
the rules of a gate do not cover all conditions, then the gate is
state-holding with a staticizer.
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